An Overlooked Development: Ethereum, IBM ADEPT and the Internet of Things (IoT)

IBMEther

It has certainly been an eventful start to 2015. The majority of headlines have dealt with bitcoin price volatility, regulated U.S.-based bitcoin exchanges, and… well… bitcoin price volatility. Amidst the flurry of headlines I believe the most significant development in decentralized systems has been wildly overlooked — that of the IBM ADEPT publication and the functional IBM / SAMSUNG demo from the 2015 CES Conference built with Ethereum’s beta protocol — the implications of which are significant. I’d like to briefly shine my humble little spotlight on these here.


First – some relevant links; If you’d like to really dig into what I’m about to address you can view both the IBM ADEPT paper (pre-publication), the IBM paper on “Device Democracy” and a video of the IBM / Samsung ADEPT demo from the 2015 CES Conference. Links below:

IBM ADEPT Pre-Publication — Cliffnotes version: IBM states their case that decentralized P2P solutions (blockchain technology) are the preferred approach to enabling the future “Internet of Things” (IoT). Claims centralized approaches are too costly, not scalable, and lack privacy. The ADEPT (Autonomous Decentralized Peer-To-Peer Telemetry) platform describes how this approach might address these issues and enable a more ideal IoT.

IBM on “Device Democracy” and the Internet of Things — Cliffnotes version: Gives context to the scale of the future IoT (billions of interconnected devices) and describes the shift from ‘special purpose computing’ to ‘general purpose’ computing with greater capability.

Screen Shot 2015-02-06 at 1.15.14 PM

Source: IBM Device Democracy Paper (2015)

IBM / SAMSUNG ADEPT Demo (CES 2015 – Las Vegas, NV) Cliffnotes version: IBM and Samsung have built a functional demo (based on the Ethereum Protocol beta-release) which demostrates the use of blockchain-based smart-contracts for appliance warranties. This is a big deal — one of the first working examples of such a use-case.


As described in the papers and demo above — the potential impact that blockchain technology may have on the Internet of Things (IoT) is significant. As a more cost-effective, scalable, and secure solution blockchain technology will enable millions (possibly billions) of interconnected devices to behave autonomously in very sophisticated ways that were never before possible.

What is most profound and game-changing is the ability for devices to behave autonomously and participate in not only the ‘Internet of Things’ but the ‘Economy of Things’. In the demo the presenter shares a use-case where a dishwasher detects that it is low on detergent and automatically proposes a new order of detergent. Such a capability foreshadows a host of future innovations for decentralized autonomous organizations (DAOs). Picture a self-driving Uber-equivalent refueling independently, getting an oil change, ordering new tires, paying tolls, renewing registration, etc. — all while paying for such services with it’s own earning from fares.

In the second use-case demonstration we see something with implications equally as significant — the ability of a device to diagnose a failed part and reference the blockchain-based warranty contract. In such scenarios a remarkable amount of work is removed from the process of verifying warranty claims and providing services for repair or replacement. Currently most warranty claims involve significant costs — phone calls to customer service, employee salaries for customer service reps, time for verifying contracts, storage and security for warranty contracts, capital and labor for repair or replacement… the list goes on.

In a world where devices operate autonomously — where warranties are completely secure and verifiable on a blockchain — such costs become almost non-existant. The device can sense a part failure, automatically verify the terms of the warranty contract, schedule the next necessary action (part replacement, repair, re-order, production, etc.), pay for the required actions, and even schedule a proposed replacement date based on the secure calendar of the owner. When you combine this with a future where 3D printing is common another such scenario might include the proactive delivery of a computer-aided design (CAD) spec — so owners have the option to print and replace the part themselves. When considering devices with enhanced self-diagnostic techniques the pre-order of parts in anticipation of failure could significantly reduce down-times or the over-production of replacement parts.


When discussing a future where the IoT is a reality many express fear that it will lead to a “1984-esque” scenario where privacy no longer exists and must be sacrificed to experience the benefits of interconnectedness. This is worth addressing here as the implications I’ve just discussed will most certainly raise the eyebrows of those sharing such concerns. Thanks to blockchain technology the benefits of a completely interconnected P2P world may be feasible with little-to-no sacrifice of personal privacy — blockchain technology is more likely to provide even more security and privacy then we currently experience in our less-connected existence — all the while reducing cost and enhancing experience. We may eventually have a world where we enjoy benefits we are only just beginning to imagine — where we get our cake and eat it too.

It is year 6 of the post-blockchain world and we are only beginning to see the implications of decentralized autonomy. These early demonstrations are humble — but like the first brief flight by the Wright Brothers — they chart an entirely new realm of future possibility.